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The role of uncertainty quantification (UQ) has become indispensable with the ad-
vent of artificial intelligence and its application to the decision-making. This thesis
leverages conformal prediction (CP) as its cornerstone, a pivotal methodology in
the field of distribution-free and model-agnostic UQ, which stems from the notion
of "conformalizing" predictions to data using the residuals to understand the errors
distribution.

In particular, in this work some strategies within the CP approach are theoret-
ically justified, and its guarantees and limitations presented. Even though the CP
paradigm was classically applied only under "data exchangeability" conditions, this
work also reviews some of the most recent and non-trivial efforts to enable CP when
this hypothesis is not fulfilled.

Lastly, to practically demonstrate CP ability to provide prediction intervals with
statistically valid coverage, different strategies are successfully applied both to a
tabular data regression problem and to a time series forecasting problem.
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Chapter 1

Introduction

In the modern era of data-driven decision-making, the need for uncertainty quan-
tification has increased across various disciplines: finance, autonomous driving,
medicine... and any other high-stake application in which there is a huge error cost.
Understanding and quantifying uncertainty is not merely about acknowledging the
limits of predictive models, but about enhancing the reliability of decisions made
based on these.

At its core, uncertainty quantification enables us to assess the confidence in the
predictions made by models and to comprehend the potential variability in these
predictions.

Formally, let us suppose we have (X, Y) ∈ Rd×R random variables from which
n samples (Xi, Yi)

n
i=1 were obtained; and assume unknown both the X and Y marginal

underlying probability distributions, as well as its joint distribution1. Given a new
sample Xn+1 and a miscoverage level α ∈ [0, 1], we would like to estimate a pre-
dictive interval Cα such that the probability of Yn+1 falling into Cα is at least 1− α,
i.e.

P{Yn+1 ∈ Cα (Xn+1)} ≥ 1− α

Note that, while retaining statistical coverage, Cα should be as small as possible to
be informative. Furthermore, the intervals should be as much adaptive as possible,
seeking for conditional coverage as upper limit (contrarily to non-adaptive marginal
coverage). These are defined as:

• Marginal coverage: P
{

Yn+1 ∈ Ĉα (Xn+1)
}

the errors may differ across regions
of the input space (i.e. non-adaptive)

• Conditional coverage: P
{

Yn+1 ∈ Ĉα (Xn+1) | Xn+1
}

errors are evenly distributed
(i.e. fully adaptive)

Obviously, conditional coverage is stronger than marginal coverage as it allows
to better represent the underlying phenomena, see Figure 1.1. However, as it will
be discussed in 2.5.4, without any distributional assumption conditional coverage
cannot be guaranteed; see Lei and Wasserman, 2014; Vovk, 2012 and Foygel Barber
et al., 2020.

Now, in the general setup, these predictions intervals Cα should be valid in finite
samples and agnostic not only to the data distribution but also to the model used to
predict Ŷn+1.

1Throughout this work, the distribution-free case will be considered: i.e. no prior knowledge of the
variables’ underlying probability distributions is assumed and, thus, all Bayesian approaches will be
disregarded.
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(A) No coverage (B) Marginal coverage (C) Conditional coverage

FIGURE 1.1: Different types of coverage. Plots based in Zaffran, 2023.

Within this data-agnostic setup, in section 1.1 quantile regression is reviewed as
a historical baseline; then, in section 1.2 conformal prediction will be presented as
means of producing Cα with statistical valid coverage.

1.1 Quantile regression

Introduced by Koenker and Bassett, 1978, quantile regression focuses on estimating
either boundaries of the distribution (quantiles) for a regression problem. Unlike
classical linear regression, which predicts dependent variable’s median given inde-
pendent variables; quantile regression predicts a quantile, providing a more com-
prehensive analysis of possible outcome distributions.

Essentially, given the quantile level β ∈ [0, 1], one can find a estimator for β by
adapting the loss function using the so-called pinball loss:

ℓβ

(
Y, Y′

)
= β

∣∣Y−Y′
∣∣ 1{|Y−Y′|≥0} + (1− β)

∣∣Y−Y′
∣∣ 1{|Y−Y′|≤0}

Thence, during the fitting process of a estimator µβ for the quantile β - where
Y ∼ µ (X) -, the following loss function can be defined:

Lµβ
(X, Y) := E

[
ℓβ

(
Y, µ̂β(X)

)]
,

as the loss function.
As discussed by Zaffran, 2023, if µ̂ ∈ argminµLµβ

, then µ̂ ≡ QX|Y(β) := inf{x ∈
R, P(X ≤ x|Y) ≥ β} is the β quantile function.

Thus, the naive approach to obtain a predictive interval with α miscoverage level
(1− α confidence) could be to fit the dependent variable’s distribution, in terms of
the independents X, with this adapted loss function and, then, prescribe:

Cα(Xn+1) =
[
µ̂ α

2
(Xn+1) , µ̂1− α

2
(Xn+1)

]
,

for a new sample Xn+1.
However, since µ α

2
& µ1− α

2
have been trained just with {(Xi, Yi)

n
i=1}, it could

happen Cα is under/over-confident out of training. Namely, for a finite sample,
there is no theoretical guarantee Cα has statistical valid coverage:

P
(

Yn+1 ∈
[
µ̂ α

2
(Xn+1) , µ̂1− α

2
(Xn+1)

])
̸= 1− α
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In conclusion, though providing an approximate measure of the target’s variabil-
ity, quantile regression (QR) does not inherently constitute a framework for provid-
ing statistically valid predictive sets.

1.2 Conformal prediction

Initially developed in the early 2000s by Vladimir Vovk, Alexander Gammerman,
and Glenn Shafer; conformal prediction (CP) was born as a framework for producing
statistically valid, data-agnostic & distribution-free predictive sets.

Heuristically, CP is based on the idea of using the samples data, not only to
train the estimator µ, but also to "conformalize" the model with the data so that
the predictive sets attain the expected coverage (unlike in QR 1.1).

In this sense, CP is based on the idea of using this "past" (sample) data to deter-
mine how the model errors are distributed and, thus, its conformity to the "reality".
This is measured in terms of the so-called conformity score.

Notice, nevertheless, CP requires at least one assumption to ensure its validity.
Since the model conformity measure is evaluated on the same samples from which
the training set is created, the data needs to be exchangeable (i.e. any permutation
of samples should not affect the joint distribution). A thorough explanation and
theoretical justification of CP, along the different methodologies to implement CP
(with options for trading-off computational or statistical efficiency), is presented in
chapter 2.
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Chapter 2

Conformal prediction

Leveraging same notation as in chapter 1, and given (X, Y) ∈ Rd ×R random vari-
ables with unknown marginal and joint probability distributions, we want to obtain
a Cα predictive interval. Let us address the case in which Y = µ(X) + ϵ, where µ is
the model function to be determined and ϵi ∼ PY|X the noise. From now on, we will
only assume the data to be exchangeable.

Definition 1 (Exchangeability). (Xi, Yi)
n
i=1 are exchangeable if, for any permutation

σ of [1, n] :

L ((X1, Y1) , . . . , (Xn, Yn)) = L
((

Xσ(1), Yσ(1)

)
, . . . ,

(
Xσ(n), Yσ(n)

))
,

where L designates the joint distribution.

Example 1. Independent identically distributed (i.i.d) samples, or the components
of a multidimensional normal distribution, are exchangeable data.

Example 2. Time series data, as well as data obtained from a random variable under
any kind of distribution shift, are examples of non-exchangeable data.

Furthermore, as mentioned in section 1.2, conformal prediction is ultimately
based in using the so-called conformality scores to construct the predictive interval.
These scores, sµ̂ or directly s, allow to transform a heuristic notion of uncertainty
from a model µ̂ into a rigorous measure of it.

Formally, any function s(X, Y) ∈ R can be chosen as score if it returns larger
values the worse the agreement between X and Y is. Note the choice of confor-
mity score will determine the way confidence intervals are built. In particular, the
simplest choice is the absolute residual score (namely, the residual) as score for the
regression problems: si := sµ̂(Xi, Yi) = |Yi − µ̂(Xi)|.

In this case, then, the predictive intervals is built as

Ĉα = [µ̂(X)− q(S), µ̂(X) + q(S)] ,

where q(S) is the 1− α empirical quantile of the conformity scores S = {si}i.

Note. The conformity score election can play a pivotal role in the uncertainty quantifi-
cation process. In particular, useless or no informative intervals can be obtained in
function of the chosen score, as explained in Angelopoulos and Bates, 2021.

Example 3. There are other well-known scores, for instance those implemented by
MAPIE developers, 2024:

• Gamma score sµ̂(X, Y) := |Y−µ̂(X)|
µ̂(X)

, such that:

Ĉα = [µ̂(X) (1− q(s)) , µ̂(X) (1 + q(s))]
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• Residual normalized score sµ̂(X, Y) := |Y−µ̂(X)|
σ̂(X)

, where σ̂(X) is another model
which predicts residuals from X (trained on (X, |Y− µ̂(X)|)), and it is such
that:

Ĉα = [µ̂(X)− q(s)σ̂(X), µ̂(X) + q(s)σ̂(X)]

Within the same conformity score setup, however, several approaches for CP can
be applied in function of the user needs regarding computational and statistical effi-
ciency. In this sense, from sections 2.1 to 2.3, different CP flavours will be presented;
while, in section 2.4, a way of "conformalizing" the quantile regression method is re-
viewed. Finally, section 2.5 is devoted the theoretical guarantees and limits of CP
and its flavours.

2.1 Split Conformal Prediction

Split Conformal Prediction (SCP) is the most widely-used flavour of conformal pre-
diction and it is based in splitting the data in a training Tr set and a calibration Cal
set. Thus, if we used the absolute residual as conformity score, SCP would prescribe
as it follows:

1. Split the data set into a training set of size #Tr and a calibration set of size #Cal

2. Obtain µ̂ by training the algorithm in the Tr set

3. Obtain a set S of conformity scores by using the Cal set: SCal := {si}i∈Cal =
{|Yi − µ̂(Xi)| , i ∈ Cal}

4. Compute q1−αSCP(SCal), namely the (1− α)
( 1

#Cal + 1
)

quantile of SCal. From
now on, we will indistinctly write q1−αSCP(SCal) ≡ q1−α(SCal)

5. For a new sample Xn+1, return the predictive interval

Ĉα = [µ̂(Xn+1)− q1−α(SCal), µ̂(Xn+1) + q1−α(SCal)] (2.1)

Note. To attain at least 1− α coverage taking into account the finite number of sam-
ples in the Cal set, in step 4 the quantile of conformity scores q1−αSCP(S) ≡ q1−α(S)
must be computed as a (1− α)

( 1
#Cal + 1

)
-quantile (instead of a (1− α)-quantile), the

so-called 1− α empirical quantile.

Let us, in Algorithm 1, state the algorithm independently of the conformity score
s choice.

Notice SCP requires that one must have enough observations to split its original
dataset into train and calibration, but at least it attains the expected coverage of
≥ 1− α. This will be theoretically backed later at section 2.5.1, particularly through
Theorem 1.

2.2 Full Conformal Prediction

Even though SCP attains expected coverage and just needs to fit a model µ once
(thus, it is not computationally demanding), the dataset needs to be large enough
for Cα to be informative.

Full Conformal Prediction (FCP) is born as a workaround to this problem. Un-
like SCP, FCP leverages the whole dataset as training and its core idea is as stated at
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Algorithm 1 SCP algorithm

Input: Regression algorithm A, miscoverage level α, data samples {(Xt, Yt)}T
t=1.

Output: Prediction interval Cα(X) for any X ∈ Rd.
1: Randomly split {1, . . . , T} into two disjoint sets Tr and Cal.
2: Fit a mean regression function: µ̂(·)← A ({(Xt, Yt) , t ∈ Tr}).
3: for j ∈ Cal do
4: Set sj the conformity scores.

Note if we chose e.g. the absolute residual as conformity score, then sj :=
sµ̂(Xj, Yj) = |Yj − µ̂(Xj)|.

5: end for
6: Set SCal = {sj, j ∈ Cal}.
7: Compute q1−α (SCal), the (1 − α) (1 + 1/ |Cal|) quantile of SCal (i.e. the 1 − α

empirical quantile).
8: Return Cα(X) = {Y ∈ R | sµ̂(X, Y) ≤ q1−α(SCal)}, for any X ∈ Rd.

Note the explicit form of Cα(x) depends on the conformality score; e.g. if we
chose the absolute residual, then Cα(X) = [µ̂(X)± q1−α (SCal)].

Angelopoulos and Bates, 2021.

Let us assume the dataset {(Xt, Yt)}T
t=1 is available and, for a new sample XT+1,

the user wants to provide the interval Cα(XT+1). Then, since the true label YT+1 lies
somewhere in Y := Im(µ) ⊂ R, looping over all possible Y ∈ Y will eventually hit
in the (XT+1, YT+1) data point which is exchangeable with the first T points; specifi-
cally, the most probable labels will have a low enough conformity score.

FCP, as explained in Algorithm 2, consists in: "discretizing" the target space Y into
N candidates Yj, traversing this loop fitting the estimator to the data & (XT+1, Yj) as
new data point, and finally returning those candidates Yj such that they "conform
enough" to the data. The latter condition will be translated to asserting whether the
conformity score of Yj candidate is "low enough" (lower than the 1 − α empirical
quantile of all conformity scores S).

Note FCP solves the problem of effectively reducing the dataset through a split,
at expenses of a huge computational efforts. In particular, FCP requires to re-fit the
model N times for every new XT+1 feature sample.

Of course, the existence of N is due to the fact we need to discretize Y to compute
Cα(XT+1). In this sense, the larger N the more accurate FCP will be, but then the
more time it will take to infer the predictive set.

Notice that in the non-discrete case (i.e. when N → +∞) we would be returning
the continuous set

Cα(XT+1) = {Y ∈ R | sµ̂j(XT+1, Y) ≤ qj
1−α(Sj)} .

2.3 Other flavours

On the one hand, in 2.1 it is shown split conformal prediction requires only one
model fitting step, but sacrifices statistical efficiency. On the other hand, in 2.2 is re-
viewed how full conformal prediction requires a very large number of model fitting
steps, but has high statistical efficiency. These are not the only two achievable points
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Algorithm 2 FCP algorithm

Input: Regression algorithmA, miscoverage level α, data samples {(Xt, Yt)}T
t=1 and

new XT+1 feature sample.
Output: Prediction interval Cα(XT+1) for any given XT+1 ∈ Rd.

1: Discretize the target space Y reducing into N candidates Yj.
2: Initialize Ŷlow = {} the array for candidates with "low enough" conformity score

3: for j ∈ {1, . . . , N}, Yj candidate do
4: Fit a mean regression function µj using Trj = {(Xt, Yt)}T

t=1 ∪ {(XT+1, Yj)} as
training data:

µ̂j(·)← A
({

(Xt, Yt) , t ∈ Trj
})

.

5: Set Sj = {sµ̂j(Xi, Yi)}T
i=1 ∪ {sµ̂j(XT+1, Yj)} the conformity scores obtained in

the same Trj training data.

6: Set qj
1−α(Sj) the (1− α)

(
1 + 1

T+1

)
quantile of Sj (i.e. the 1− α empirical quan-

tile)
7: if sµ̂j(XT+1, Yj) ≤ qj

1−α(Sj) then
8: Add Yj to Ŷlow
9: end if

10: end for
11: Return Cα(XT+1) = Ŷlow.

on the spectrum: but there are techniques that precisely fall in between, trading off
statistical efficiency and computational efficiency differently.

As represented in Figure 2.1, this is the case of cross-conformal prediction CV+
(Vovk, 2015) and Jackknife+ (Barber et al., 2021), methods which both use a small
number of model fits, but still leveraging all data for both model fitting and calibra-
tion.

On the one hand, the so-called Jackknife+ method is based on leave-one-out
(LOO) and, for a new Xn+1, it heuristically prescribes:

1. For each i ∈ D := {1, . . . , T} sample of the training data:

Statistical Efficiency

Computational Efficiency

SCP CV+ Jackknife+ FCP

Nested Conformal Prediction

FIGURE 2.1: Representation of the trade-off between statistical and
computational efficiencies for the different approaches. Based on Zaf-

fran, 2023.
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• Fit a mean regression function µ−i training A in D \ (Xi, Yi):

µ̂−i(·)← A ({(Xt, Yt) , t ∈ D \ (Xi, Yi)}) .

• Get the conformity scores

S i
up/down = µ̂−i(Xn+1)± sµ̂−i(Xi, Yi)

2. Set the conformity scores’ sets: Sup = {S i
up}i∈D and Sdown = {S i

down}i∈D

3. Defining qβ,inf(Z1, . . . , Zn) as the ⌊β × n⌋ smallest value of (Z1, . . . , Zn), and
q1−α the 1− α empirical quantile; the following predictive interval is returned:

Ĉα(Xn+1) =
[
qα,inf(Sdown), q1−α(Sup)

]
Note, however, J+aB may be more computationally demanding even than FCP

if the dataset is large such T > N (more samples T than N points needed to discretize
the Y space in FCP).

On the other hand, the CV+ method is based on cross-validation residuals and
precisely extends the previous idea into a "batch" of samples. Thence, the following
differences must be taken into account:

• Instead of leaving one out of D, CV+ splits the data into K folds F1, . . . , FK.

• Then, for each k ∈ {1, . . . , K} fold:

– A mean regression function µ−FK is fit training A in D \ Fk, instead of
D \ (Xi, Yi).

– The conformity scores are no longer a value (for each i ∈ {1, . . . , N}) but
a subset (obtained with samples within each fold k):

S k
up/down = {µ̂−k(Xn+1)± sµ̂−k(Xi, Yi)}i∈Fk

Notice this method enhances the computational efficiency at expenses of the sta-
tistical’s, by training A less times (and with less data). For a precise and complete
description of the algorithms, we refer the reader to the former works (Vovk, 2015
and Barber et al., 2021).

2.4 Conformalized Quantile Regression

While the former flavours of conformal prediction have theoretical guarantees for its
statistical coverage, just marginal coverage is sought thus providing non-adaptive
predictive intervals:

P
{

Yn+1 ∈ Ĉα (Xn+1)������| Xn+1 = x
}
≥ 1− α

In this section, thence, we present the Conformalized Quantile Regression (CQR)
as means of obtaining more adaptive intervals Cα. As discussed in 2.5.4, notice that
while approximate and asymptotic conditional coverage can be sought, conformal
prediction (even within CQR) does not guarantee it without further assumptions
than data exchangeability. Nevertheless, at practice, CQR will allow us to obtain
more informative intervals.
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CQR proposes to fit not one µ but two models µdown and µup and adjusting the
conformality score sµ to:

sA(Xi, Yi) := max
(
µ̂down(Xi)−Yi, Yi − µ̂up(Xi)

)
(2.2)

The model µdown and µup are no longer trying to capture the mean value of
(X, Y), but rather the low and high quantiles of their distribution (e.g. µdown & µup
could be estimators of the α/2 and 1− α/2 quantiles). In this sense, CQR achieve
adaptive predictive intervals by adding/subtracting the conformity score to the in-
ferred values of 2 different estimators.

Thus, CQR is not a different methodology but another "choice" of conformity
score definition and it is compatible with the SCP or FCP approaches (or others such
as Jackknife+, CV+...).

Let us see, as an example in Algorithm 3, what CQR prescribes if we use the SCP
approach:

Algorithm 3 CQR algorithm (using split prediction)

Input: Regression algorithm A, miscoverage level α, data samples {(Xt, Yt)}T
t=1.

Output: Prediction interval Cα(X) for any X ∈ Rd.
1: Randomly split {1, . . . , T} into two disjoint sets Tr and Cal.
2: Fit 2 regression functions, one for the lower quantile µ̂down and one for the upper

µ̂up:
µ̂down(·), µ̂up(·)← A ({(Xt, Yt) , t ∈ Tr}) .

3: for j ∈ Cal do
4: Set sj the conformity score using 2.2:

sj := sA(Xj, Yj) = max
(
µ̂down(Xi)−Yi, Yi − µ̂up(Xi)

)
5: end for
6: Set SCal = {sj, j ∈ Cal}.
7: Compute q1−α (SCal), the (1 − α) (1 + 1/ |Cal|) quantile of SCal (i.e. the 1 − α

empirical quantile).
8: Return Cα(Xn+1) =

[
µ̂down(Xn+1)− q1−α (SCal) , µ̂up(Xn+1) + q1−α (SCal)

]
for

any new Xn+1 ∈ Rd.

2.5 Theoretical guarantees and limits

Even though the heuristic notion justifying the validity of the different paradigms of
conformal prediction may be clear, we have not discussed its theoretical guarantees
and limits yet. Yet, this is precisely the objective in this section: while in 2.5.1 and
2.5.2 we will proof 1 − α coverage can be sought in SCP and FCP respectively, in
2.5.3 we will discuss which are the guarantees for Jackknife+ and CV+, and we will
conclude by reviewing the known limits of conformal prediction in 2.5.4.

2.5.1 Split Conformal Prediction

Henceforth, in Theorem 1 and through Lemma 1, the theoretical guarantee of SCP
(algorithm 1) is proven. We reproduce the proof found at Zaffran, 2023, which is
general for any conformity score s choice; however, note that:
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• The proof for the lower bound initially appeared at Papadopoulos et al., 2002
for i.i.d. data. Then, Vovk, Gammerman, and Shafer, 2005 proved that the the-
orem also holds if the observations satisfy the weaker condition of exchange-
ability.

• The upper bound case was initially proved with Theorem 2.2 of Lei, G’Sell,
et al., 2018 (along the lower bound case, see A.1) but specifically for the abso-
lute residual score case. The proof required the residuals to have a continuous
joint distribution, but as mentioned in Angelopoulos and Bates, 2021 this con-
dition is not important because the user can always add a vanishing amount
of random noise to the score.

• Both lower and upper bound cases were later stated for the CQR case in Theo-
rem 1 of Romano, Patterson, and Candès, 2019 (and proved in its supplemen-
tary material).

Lemma 1 (Quantile lemma). If (U1, . . . , Un, Un+1) are exchangeable, then for any β ∈] 0, 1[:

P
(
Un+1 ≤ qβ (U1, . . . , Un,+∞)

)
≥ β.

Additionally, if U1, . . . , Un, Un+1 are almost surely distinct, then:

P
(
Un+1 ≤ qβ (U1, . . . , Un,+∞)

)
≤ β +

1
n + 1

Proof. First note that Un+1 ≤ qβ (U1, . . . , Un,+∞)⇐⇒ Un+1 ≤ qβ (U1, . . . , Un, Un+1).
Then, by definition of qβ :

Un+1 ≤ qβ (U1, . . . , Un, Un+1)⇐⇒ rank (Un+1) ≤ ⌈β(n + 1)⌉

By exchangeability, rank (Un+1) ∼ U{1, . . . , n + 1}. Thus:

P (rank (Un+1) ≤ ⌈β(n + 1)⌉) ≥ ⌈β(n + 1)⌉
n + 1

≥ β.

If U1, . . . , Un, Un+1 are almost surely distinct (without ties):

P (rank (Un+1) ≤ ⌈β(n + 1)⌉) = ⌈β(n + 1)⌉
n + 1

≤ 1 + β(n + 1)
n + 1

= β +
1

n + 1
.

Theorem 1 (SCP guarantees). Suppose (Xi, Yi)
n+1
i=1 are exchangeable. SCP applied on

(Xi, Yi)
n
i=1 yields Ĉα(·) such that:

P
{

Yn+1 ∈ Ĉα (Xn+1)
}
≥ 1− α.

Additionally, if the scores {Si}i∈Cal ∪ {Sn+1} are a.s. distinct:

P
{

Yn+1 ∈ Ĉα (Xn+1)
}
≤ 1− α +

1
#Cal + 1

Proof. When (Xi, Yi)
n+1
i=1 are exchangeable, the scores {Si}i∈Cal ∪ {Sn+1} are also ex-

changeable. Applying Lemma 1 to the scores concludes the proof.
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2.5.2 Full Conformal Prediction

Even though it leverages all data samples, FCP also attains the expected 1− α statis-
tical coverage and the idea in which the proof relies is really similar to the SCP proof
(in particular, it strongly relies on the exchangeability of the sn+1 conformity score
w.r.t. s1, . . . , sn).

However, an additional hypothesis is needed and, although related to exchange-
ability, consists in the algorithm A being symmetrical.

Definition 2 (Symmetrical algorithm). A deterministic algorithmA : (U1, . . . , Un)→
Â is symmetric if, for any permutation σ of [1, n] :

A (U1, . . . , Un)
a.s.
= A

(
Uσ(1), . . . , Uσ(n)

)
.

With this new restraint, the following theorem can now be announced:

Theorem 2 (FCP guarantees). Suppose (Xi, Yi)
n+1
i=1 are exchangeable andA is symmetric.

FCP applied on (Xi, Yi)
n
i=1 ∪ {Xn+1} yields Ĉα(·) such that:

P
{

Yn+1 ∈ Ĉα (Xn+1)
}
≥ 1− α.

Additionally, if the scores are a.s. distinct:

P
{

Yn+1 ∈ Ĉα (Xn+1)
}
≤ 1− α +

1
n + 1

For sake of length and in view of the similarity of FCP proof w.r.t. to SCP’s,
Theorem 2 proof will be skipped. Nevertheless, for a detailed version, the reader
can refer to Vovk, Gammerman, and Shafer, 2005 or Lei, G’Sell, et al., 2018 (A.1
appendix proof of Theorem 2.1).

2.5.3 Other flavours

Whereas SCP sacrificed statistical efficiency at expenses of computational efforts by
splitting the available dataset in two, FCP proposed the contrary leveraging all the
data but at the price of much more model fits; and, so far, we have seen these both
two opposite methodologies guarantee 1− α statistical coverage.

In this section, we briefly discuss the state of 2 approaches in-between the spec-
trum: the Jackknife+ & the CV+.

In this sense, in general, it is seen the Jackknife+ method does not guarantee 1− α
statistical coverage. Nevertheless, as proved in Barber et al., 2021, if {(Xi, Yi)}n+1

i=1 are
exchangeable and A symmetric, then:

P
(
Yn+1 ∈ Ĉα(Xn+1)

)
≥ 1− 2α

Yet, Barber et al., 2021 proposes the so-called "jackknife-minmax" method to attain
1− α coverage within the jackknife setting; in practice, it is seen the yielded predic-
tion intervals are too conservative.

We can refer to the same former reference to find out the CV+ method, proposed
in Vovk, 2015, is another case in which 1− α coverage is no attained without further
assumptions.
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Actually, within the same hypothesis of {(Xi, Yi)}n+1
i=1 being exchangeable and A

symmetric, one can prove that, for CV+:

P
(
Yn+1 ∈ Ĉα(Xn+1)

)
≥ 1− 2α−min

(
2 (1− 1/K)

n/K + 1
,

1− K/n
K + 1

)
≥ 1− 2α−

√
2/n

It is beyond the scope of this work offer complete proof for these results; how-
ever, to obtain an exhaustive overview, the user is referred to Barber et al., 2021.

2.5.4 Impossibility results

So far, it has been shown SCP (and FCP) just requires data exchangeability (as well
as A to be symmetrical) in order to achieve guaranteed 1− α statistical coverage.

Of course, even though useful and informative predictive intervals can be ob-
tained (precisely, this is the purpose of CP), the type of coverage we can expect is
marginal rather than conditional.

This is precisely the impossibility result Lei and Wasserman, 2014; Vovk, 2012
and Foygel Barber et al., 2020 have reached to: without distribution assumption, in
finite sample, a perfectly conditionally valid Ĉα is such that P

{
mes

(
Ĉα(x)

)
= ∞

}
=

1 for any non-atomic x. Namely, the measure of Ĉα(x) will be, with all probability,
infinite.

However, for certain problems and in function of the sample size, approximate
or even asymptotic conditional coverage can be reached. Below, several of these
results are cited so that the user can refer to them:

• Approximate conditional coverage: P
(
Yn+1 ∈ Ĉα | Xn+1 ∈ R(x)

)
≥ 1− α for

certainR(x) clusters or aggregations of the features samples.

– Romano, Sesia, and Candès, 2020: in classification problems, approximate
conditional coverage can be sought for specialized versions of Jackknife+
and CV+ techniques and categorical & unordered response labels.

– Guan, 2022: additional local coverage guarantees (under suitable assump-
tions) by offering a single-test-sample adaptive construction that empha-
sizes a local region around this test sample.

– Jung et al., 2022: CP algorithms are proposed in order to attain multivalid
coverage on exchangeable data in the batch setting (a little bit stronger
than conditional coverage on group membership).

– Gibbs, Cherian, and Candès, 2023: reformulates conditional coverage as
coverage over a class of covariate shifts and, when the target class of
shifts is finite dimensional, finite sample coverage over all possible shifts
is achieved.

• Asymptotic (with the sample size) conditional coverage:

– Kivaranovic, Johnson, and Leeb, 2020: a neural network is proposed so
that it outputs three values instead of a single point estimate and opti-
mizes a loss function motivated by the standard quantile regression loss,
achieving stronger coverage.
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– Izbicki, Shimizu, and R. Stern, 2020 and Izbicki, Shimizu, and R. B. Stern,
2022: both introduce some conformal methods based on conditional den-
sity estimators to obtain asymptotic conditional coverage; most based on
the idea of creating prediction bands (in a data-driven way) locally on a
partition of the features space.

– Chernozhukov, Wüthrich, and Zhu, 2021: a method is proposed to con-
struct conditionally valid prediction intervals based on models for condi-
tional distributions (such as quantile and distribution regression).

– Sesia and Romano, 2021: a conformal method is proposed to compute
prediction intervals for non-parametric regression that can automatically
adapt to skewed data (with probably marginal coverage in finite samples,
while asymptotically achieving conditional coverage if the model is con-
sistent).
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Chapter 3

Beyond exchangeability

As discussed in chapters 1 & 2, the (data) exchangeability assumption is crucial as it
ensures the error rates of the predictions are controlled across all possible partitions
of the data. However, real-world data often challenge this assumption, presenting
scenarios where exchangeability is not preserved.

In particular, we can distinguish two principal cases where exchangeability fails:
distribution shifts and auto-correlation.

On one hand, distribution shifts occur when the process generating the test data
differs from the process that generated the training data. These shifts can signifi-
cantly impact the performance of predictive models, not only by rendering the previ-
ously learned patterns obsolete or less effective; but also in the CP case, by affecting
the distribution of error rates.

For instance, some common types of shifts are:

• Covariate shift: changes in the input features’ distribution.

• Label shift: changes in the target variable’s distribution.

On the other hand, when there is auto-correlation between samples, training and
calibration samples might be similar in such a way the model error rates is not evenly
distributed. For instance, in the case of time series and their temporal nature of data.

In this chapter, we delve into the application of CP in such contexts. In particular,
in sections 3.1 and 3.2 we review the heuristic ideas on how to make CP to work
under shifts in data distribution (covariate & label shifts, respectively). Then, in
section 3.3, we present how can CP be adapted to work with time series data.

3.1 Covariate shift

Covariate shift describes the phenomenon by which the input features’ distribution
has suffered changes PX → P̃X.

Thus, within this case, we can formally state the following setting:

• {(Xi, Yi)}n
i=1

exch.∼ PX × PY|X

• (Xn+1, Yn+1) ∼ P̃X × PY|X

Then, the heuristic idea in order to keep the error rates of the predictions some-
what controlled is to give more "relevance" to those calibration points that are closer
in distribution to the test point.

In practice, this can be translated in the following algorithm:
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1. Estimate how "close" a sample Xi (∼ PX) is w.r.t. to the test point (∼ P̃X) using
the likelihood ratio: w(Xi) := dP̃X(Xi)

dPX(Xi)
.

2. Normalize the weights: ωi := w(Xi)

∑n+1
j=1 w(Xj)

.

3. Build the predictive interval Cα using the weighted calibration samples:

Ĉα (Xn+1) = {Y : sµ̂ (Xn+1, Y) ≤ q1−α ({ωiSi}i∈Cal)} (3.1)

This approach not only works in practice, but also theoretically attains at least
1− α coverage if the samples are i.i.d. drawn, as announced by Theorem 3:

Theorem 3 (CP guarantees under covariate shift). Suppose {(Xi, Yi)}n
i=1 are drawn

i.i.d. from PX × PY|X, and (Xn+1, Yn+1) is drawn independently from P̃X × PY|X. Then, Ĉα

from 3.1 is such that:
P
(
Yn+1 ∈ Ĉα (Xn+1)

)
≥ 1− α.

Further details of the implementation and theoretical guarantees can be found at
Tibshirani et al., 2019.

3.2 Label shift

Label shift refers to the change in the target variable’s distribution PY → P̃Y.
Formally, thus, this case can be stated as it follows:

• {(Xi, Yi)}n
i=1

exch.∼ PX|Y × PY

• (Xn+1, Yn+1) ∼ PX|Y × P̃Y

The essential idea here is analogous to section 3.1: to give more "relevance" to
those calibration points that are closer to the test point; with the added difficulty,
however, that for a new sample Xn+1, its label Yn+1 is unknown.

In practice, this can be circumvented letting the weights ωi as function of Y:

1. Estimate how "close" a label Yi (∼ PY) is w.r.t. to the hypothetical point (∼ P̃Y)
using the likelihood ratio: w(Yi) := dP̃Y(Yi)

dPY(Yi)
.

2. Normalize the weights: ωY
i := w(Yi)

∑n
j=1 w(Yj)+w(Y) .

3. Build the predictive interval Cα traversing all the variable output’s space and
using the weighted calibration samples:

Ĉα (Xn+1) = {Y : sµ̂ (Xn+1, Y) ≤ q1−α

(
{ωY

i Si}i∈Cal

)
} (3.2)

For a more exhaustive overview, the user can refer to Podkopaev and Ramdas,
2021. Apart from a detailed implementation of the procedure, the author adapts the
covariate-shift results of Tibshirani et al., 2019 (based on the "weighted exchangeability"
concept) into this label-shift case through Theorem 4:

Theorem 4 (CP guarantees under label shift). Suppose {(Xi, Yi)}n
i=1 are drawn i.i.d.

from PX|Y × PY, (Xn+1, Yn+1) is drawn independently from PX|Y × P̃Y and the true likeli-
hood ratios ω

y
i are known for all Y. Then, Ĉα from 3.2 is such that:

P
(
Yn+1 ∈ Ĉα (Xn+1)

)
≥ 1− α.
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3.3 Conformal prediction for time-series

Time series are, in general, a great example of data with strong auto-correlation
amongst samples. Examples abound e.g. in financial markets (stock prices are in-
fluenced by their historical values) or in meteorology (with spatial auto-correlation
as well, since weather conditions are influenced by their own regimes and variabil-
ity modes).

In this case we have a setup such that Yt = µ (Xt) + ϵt, where ϵt are identically
distributed according to a common cumulative distribution function F. Assuming
the first T sample points {(Xt, Yt)

T
t=1} are training data, we want to construct a se-

quence of s ≥ 1 prediction intervals of α miscoverage level, {Cα
T,T+i}s

i=1, for the
unknown labels {Yα

T+i}s
i=1 (being s a fixed batch size corresponding to how many

steps we want to look ahead).
Once new samples {(XT+i, YT+i)}s

i=1 become available, we would like to also
leverage them using the most recent T + s points for the predictive intervals of Yj for
j = T + s + 1 onward.

We will focus on the so-called "EnbPI" methodology, proposed by Xu and Xie,
2021, which allows the use of CP when there is samples auto-correlation, particularly
specializing in the case of time series.

This flavour resembles the "Jackknife+ after bootstrap" technique (Kim, Xu, and
Barber, 2020), in the sense it applies CP to ensemble methods; but unlike the former
work, EnbPI does not assume exchangeability and it does leverage new (sequen-
tially) revealed observations.

Yet, as in section 2.3, the i-th "leave-one-out" (LOO) estimator1 of µ will be de-
noted by µ̂−i.

Besides, as discussed below, EnbPI has several other benefits: it requires no data-
splitting, avoids model overfitting and does not refit models during test time.

3.3.1 EnbPI implementation

Below, it is listed the essential idea which EnbPI algorithm2 uses to return the T1
future predictive intervals (indices T + 1, . . . , T + T1; as there are T training samples):

• Obtain B bootstrapped models (henceforth denoted by µb) by:

– Sampling, with replacement, an index set Sb := (i1, . . . , iT) from indices
(1, . . . , T).

– Fit the bootstrapped model, with Sb:

µ̂b(·)← A ({(Xi, Yi) , i ∈ Sb}) .

• For each i of the T training samples, aggregate the bootstrapped models (with
an aggregation function denoted ϕ) obtaining: µ̂

ϕ
−i. Then, compute the confor-

mity scores using the absolute residual: ϵ
ϕ
i :=

∣∣∣Yi − µ̂
ϕ
−i(Xi)

∣∣∣.
1Note its training data, then, will include the rest of T − 1 points and just exclude the i-th (Xi, Yi)

point).
2We no longer use S for the conformity scores, but for the S index sets. In EnbPI, the idea of confor-

mity score is represented through ϵ and w.
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• For each t of the future T1 timestamps (test data), return in a s-sized batch the
predictive interval:

Ĉα
T,t (Xt) =

[
µ̂

ϕ
−t(Xt)− wϕ

t , µ̂
ϕ
−t(Xt) + wϕ

t

]
,

where:

– µ̂
ϕ
−t(Xt) is the 1− α quantile of {µ̂ϕ

−i(Xt)}T
i=1.

– wϕ
t is the 1− α quantile of {ϵϕ

i }T
i=1.

• Lastly, note this interval’s retrieval is made sequentially using "batch". This
means that, for each s returned intervals, the conformity score wϕ

t will be re-
computed leveraging the most recent observations as well (steps 15-19 in Al-
gorithm 4).

More formally, the algorithm is adapted from Xu and Xie, 2021 and stated in
Algorithm 4.

Note the authors later proposed, in Xu and Xie, 2023, a slight modification in the
calculation of µ̂

ϕ
−t(Xt) (leveraging ϕ) and wϕ

t (introducing a new quantity β̂ to affect
the quantile level).

3.3.2 Theoretical guarantees

An exhaustive review of the theoretical proofs of EnbPI coverage is much beyond of
the scope of this work.

Nevertheless, the reader can refer to Xu and Xie, 2023 where the main results are
provided.

In particular, conditional coverage is attained not in an absolute sense but in an
asymptotic sense; all this up to two hypotheses:

• Errors are short-term i.i.d (independent and identically distributed) according
to a common CDF Lipschitz continuous. See Assumption 1 of Xu and Xie,
2023.

• Estimation quality (Assumption 2): there exists a real sequence {δT}T>0 that
converges to zero such that:

1
T

T

∑
t=1

(µ̂−t (Xt)− µ (Xt))
2 ≥ δ2

T and

|µ̂−t (XT+1)− µ (XT+1)| ≤ δT.

As discussed, these are mild assumptions. However, since are talking about
asymptotic coverage, notice the coverage level depends on the size of the training
set and on (δT)T>0.

Furthermore, though weaker, the authors also present a theorem showing marginal
asymptotic coverage is sought too.

The proof (see Appendix A of Xu and Xie, 2023) removes the assumptions on
data exchangeability by replacing them with general and verifiable assumptions on
the error process and estimation quality. Without loss of generality, just guarantees
are shown for t = T + 1 (one-step-ahead prediction); but, in Remark 1, it is explained
how it can be extended to t = T + 2, . . . , T + T1.
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Algorithm 4 EnbPI algorithm

Input: Regression algorithm A, miscoverage level α, aggregation function ϕ, num-
ber of bootstrap models B, batch size s, training data {(Xi, Yi)}T

i=1 and test data
{(Xt, Yt)}T+T1

t=T+1 with Yt revealed only after the batch of s prediction intervals
with t in the batch are constructed.

Output: Ensemble prediction interval {Ĉα
T,t (Xt)}T+T1

t=T+1.
1: for b = 1, . . . , B do
2: Sample with replacement an index set Sb = (i1, . . . , iT) from indices (1, . . . , T)

3: Compute µ̂b(·)← A ({(Xi, Yi) , i ∈ Sb}).
4: end for
5: Initialise ϵ = {}
6: for i = 1, . . . , T do
7: µ̂

ϕ
−i (Xi) = ϕ

({
µ̂b (Xi) | i /∈ Sb

})
8: Compute ϵ̂

ϕ
i =

∣∣∣Yi − µ̂
ϕ
−i (Xi)

∣∣∣
9: ϵ = ϵ ∪

{
ϵ̂

ϕ
i

}
10: end for
11: for t = T + 1, . . . , T + T1 do

12: Let µ̂
ϕ
−t (Xt) = (1− α) quantile of

{
µ̂

ϕ
−i (Xt)

}T

i=1
13: Let wϕ

t = (1− α) quantile of ϵ

14: Return Ĉα
T,t (Xt) =

[
µ̂

ϕ
−t (Xt)± wϕ

t

]
15: if t− T = 0 mod s then
16: for j = t− s, . . . , t− 1 do
17: Compute ϵ̂

ϕ
j =

∣∣∣Yj − µ̂
ϕ
−j (Xt)

∣∣∣
18: ϵ =

(
ϵ−

{
ϵ̂

ϕ
1

})
∪
{

ϵ̂
ϕ
i

}
and reset index of ϵ

19: end for
20: end if
21: end for
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Chapter 4

Results

After a survey of the main theoretical CP findings & modern flavours (Chapter 2),
and the recent workarounds to enable this framework in the non-exchangeable case
(Chapter 3); this chapter will be devoted to the assessment of two different practical
use-cases.

First, in section 4.1 we will briefly review the code implementation in Python
and, in section 4.2, we will discuss how the user can assess several important at-
tributes of the obtained predictive intervals.

Lastly, in section 4.3 we will present the results of applying CP to a tabular data
regression problem; while the non-exchangeable case will be covered in section 4.4,
in which CP will be applied to a energy demand forecasting problem.

4.1 Implementation

The code developed for this work can be found at the corresponding author’s repos-
itory. Essentially, the scripts leverage the Python library mapie, both for the compu-
tation of predictive intervals and the assessment of results.

In particular, regarding the uncertainty quantification procedure, we can distin-
guish the following Python classes:

• mapie.regression.MapieRegressor: it deduces valid confidence intervals by
evaluating out-of-fold conformity scores on hold-out validation sets. Depend-
ing on the different parameters election, one strategy or another can be imple-
mented. In particular, to apply

– SCP: method="base" & cv="split" must be selected.

– CV+: method="plus" & cv=K must be selected, with K the number of
cross-validation folds (e.g. 10).

– Jackknife’s J+aB: method="plus" & cv=Subsample(n_resamplings=n)
must be selected, initializing the mapie.subsample.Subsample class with
a certain n number of bootstrapped resamples (e.g. 50).

All the former is implemented in the cp.exchangeable author’s module.

• mapie.regression.MapieQuantileRegressor: enables CQR strategy, as pro-
posed by Romano, Patterson, and Candès, 2019, with the only valid selections:
method="quantile" & cv="split". The author implements it in the same
cp.exchangeable module.

• mapie.regression.MapieTimeSeriesRegressor: enables the conformal pre-
diction framework for single-output time series data by predicting intervals
calibrated with out-of-fold residuals. The method="enbpi" implements the

https://github.com/gcastro-98/conformal-prediction
https://github.com/gcastro-98/conformal-prediction
https://mapie.readthedocs.io/en/stable/index.html
https://mapie.readthedocs.io/en/stable/generated/mapie.regression.MapieRegressor.html#mapie.regression.MapieRegressor
https://mapie.readthedocs.io/en/stable/generated/mapie.subsample.Subsample.html#mapie.subsample.Subsample
https://github.com/gcastro-98/conformal-prediction/blob/main/cp/exchangeable.py
https://mapie.readthedocs.io/en/stable/generated/mapie.regression.MapieQuantileRegressor.html#mapie.regression.MapieQuantileRegressor
https://github.com/gcastro-98/conformal-prediction/blob/main/cp/exchangeable.py
https://mapie.readthedocs.io/en/stable/generated/mapie.regression.MapieTimeSeriesRegressor.html#mapie.regression.MapieTimeSeriesRegressor
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EnbPI strategy, as proposed by Xu and Xie, 2021, which allows you to con-
tinuously update conformal scores using the partial_fit class method. The
author leverages this class in the cp.ts module.

4.2 Assessment

When it comes to assessing the benefits of each strategy certain attributes must be
taken into account. For instance:

• Coverage level: i.e. the fraction of true labels which lie within the prediction
intervals, with mapie.metrics.regression_coverage_score_v2 as metric.

• Interval width: the intervals’ mean width, which can be turned into score as
prescribed by mapie.metrics.regression_mean_width_score.

• "Informativeness": a trade-off exists between the interval’s width (the smaller,
the more informative they are) and the statistical coverage. A clear way of
assessing this, combining both the w mean width score and the c coverage
score, is through the CWC score.

This metric, implemented by mapie.metrics.coverage_width_based, was pro-
posed by Khosravi, Nahavandi, and Creighton, 2010 and is computed as:

CWC = (1− w) ∗ exp
(
−η(c− (1− α))2) ,

where η is a balancing term devoted to reward narrow intervals and penalize
those that do not achieve a specified coverage probability.

• Adaptability: the ability of achieving (approximate) conditional coverage, mea-
sured by the score mapie.metrics.regression_ssc_score. The SSC (Size Strat-
ified Coverage) score computes the maximum violation of the coverage. In
particular, the intervals are grouped by width and the coverage is computed
for each group. The lower coverage is the maximum coverage violation. An
adaptive method is one where this maximum violation is as close as possible
to the global coverage.

However, it is very important to check that the intervals widths are well spread
before drawing conclusions, because this metric is only usable if the predicted
intervals have non-constant width.

• Computational efficiency: the amount of computational resources needed to
implement each strategy, which could be measured in terms of CPU time (both
training and inference).

In this work, we use the author’s repository cp.validate & cp.visualize modules
to respectively compute and represent all the former metrics.

4.3 Exchangeable data

In this work, we use (through the author’s cp.data module) the same dataset as the
mapie’s CQR tutorial to present the exchangeable data use-case: the sklearn built-in
California Housing dataset.

Chosen in view of being simple and reproducible, in particular no feature en-
gineering is needed; it is composed of 20,640 samples of the following 8 different
features:

https://mapie.readthedocs.io/en/stable/generated/mapie.regression.MapieTimeSeriesRegressor.html#mapie.regression.MapieTimeSeriesRegressor.partial_fit
https://github.com/gcastro-98/conformal-prediction/blob/main/cp/ts.py
https://mapie.readthedocs.io/en/stable/generated/mapie.metrics.regression_coverage_score_v2.html#mapie.metrics.regression_coverage_score
https://mapie.readthedocs.io/en/stable/generated/mapie.metrics.regression_mean_width_score.html
https://mapie.readthedocs.io/en/latest/theoretical_description_metrics.html#coverage-width-based-criterion
https://mapie.readthedocs.io/en/stable/generated/mapie.metrics.regression_ssc_score.html#mapie-metrics-regression-ssc-score
https://github.com/gcastro-98/conformal-prediction/blob/main/cp/validate.py
https://github.com/gcastro-98/conformal-prediction/blob/main/cp/visualize.py
https://github.com/gcastro-98/conformal-prediction/blob/main/cp/data.py
https://mapie.readthedocs.io/en/stable/examples_regression/4-tutorials/plot_cqr_tutorial.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
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• The median income in block group

• The median house age in block group

• The average number of rooms per household

• The average number of bedrooms per household

• The block group population

• The average number of household members

• The location (latitude & longitude) of the block group

• The label variable: the median house price for a given block group.

The marginal distributions of the dataset are shown in Figure A.1 at Appendix
A, where the complete set of visualizations and plots for the results’ analysis can
also be found.

Due to the dataset complexity and its potential non-linear relationships, a gradi-
ent boosting model is chosen as base estimator. In particular, the LGBM regressor is
implemented through the library’s lightgbm.LGBMRegressor Python class.

Furthermore, to automate the hyper-parameters fine-tuning task, a randomized
grid-search is implemented using a 5-fold cross-validation. For this particular prob-
lem, the found best settings are:

• learning_rate: 0.34318

• max_depth: 18

• n_estimators: 75

• num_leaves: 29

Then, 4 strategies are implemented with mapie according to section 4.1 configura-
tion; these are: the Split Conformal Prediction (SCP), the Cross-Validation + (CV+),
the Jackknife+ after Bootstrapping (J+aB) and the Conformalized Quantile Regres-
sion (CQR).

While all the 4 strategies are able to provide informative prediction intervals,
they present differences in their attributes as shown in Table 4.1. All the code used
to generate these results and visualizations can be found at the author’s regres-
sion.ipynb notebook.

In particular, some remarks can be drawn:

• CQR & SCP are those with most statistical efficiency in terms of coverage (the
attained "Coverage" is closer to the expected 0.80).

• On the one hand, CQR & SCP are both based in a 1-fold split of the dataset.
Consequently, while their training and prediction times are significantly lower
than CV+ & J+aB strategies; the predictive power of the base estimator (trained
just with 70% of the data) is also slightly lower.

• On the other hand, and spite of its large training and inference times, & J+aB
offers the best coverage-width ratio (and thus, informative intervals) according
to the CWC score.

• Unlike J+aB or SCP, CV+ & CQR offers some interval adaptability. In this
sense, according to the SSC score, CQR is better not only achieving global cov-
erage but also approximate conditional coverage.

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html#lightgbm.LGBMRegressor
https://github.com/gcastro-98/conformal-prediction/blob/main/regression.ipynb
https://github.com/gcastro-98/conformal-prediction/blob/main/regression.ipynb
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Strategy Coverage RMSE Training time Inference time
SCP 0.806 ± 0.008 0.472 ± 0.007 1.602 ± 0.174 0.068 ± 0.054
CV+ 0.853 ± 0.004 0.467 ± 0.009 9.329 ± 2.804 7.986 ± 0.302
J+aB 0.734 ± 0.007 0.467 ± 0.009 51.210 ± 5.609 9.698 ± 0.424
CQR 0.805 ± 0.010 0.494 ± 0.013 2.601 ± 0.087 0.095 ± 0.044

(A) Coverage, RMSE, training & inference times.

Strategy Coverage Width CWC SSC
SCP 0.806 ± 0.008 0.971 ± 0.015 0.798 ± 0.004 —
CV+ 0.853 ± 0.004 1.042 ± 0.005 0.784 ± 0.002 0.650 ± 0.012
J+aB 0.734 ± 0.007 0.710 ± 0.003 0.853 ± 0.001 —
CQR 0.805 ± 0.010 1.013 ± 0.013 0.790 ± 0.004 0.745 ± 0.043

(B) Coverage, width, coverage width-based crite-
rion (CWC) score & size-stratified coverage (SSC)

score.

TABLE 4.1: Different strategies’ metrics after a 5-fold cross-validation
for α = 0.2 regression problem.

In conclusion, CQR seems the best strategy in order to achieve the best marginal
and conditional coverage; thus, resulting a specially good choice in those applica-
tions needing for a conservative and statistical efficient tool. The training and infer-
ence times constitute good reasons for its election too, but it should be taken into
account a large enough dataset is needed for the method to be informative (since the
dataset will be split).

On the contrary, in case predictive power is to be maximized, while minimiz-
ing intervals width, and at expenses of some potential coverage loss and almost no
adaptability, then J+aB should be chosen. Thus, this strategy seems suitable for
those applications in which more reckless guesses can be afforded and the highest
predictive power with the minimal width is desired.

Finally, to provide more in-depth detail about the coverage capabilities of the
former strategies, some plots regarding a specific experiment are displayed in Figure
4.1.

In particular, at sub-figures 4.1a & 4.1b, the ability of CQR & CV+ to adapt the
interval width to the situation is displayed opposed to J+aB’s. Besides, more adapt-
ability is achieved by CQR, because sub-figure 4.1a shows the intervals’ width his-
tograms and how CQR features much more variability than CV+ (also wider inter-
vals’ bins are occupied more frequently).

Then, sub-figure 4.1b presents the attained coverage in function of the interval
widths each strategy yielded, showing how CQR effectively attains more coverage
per different width.

And lastly, sub-figure 4.1c shows the ability to attain global coverage but in func-
tion of different α values (through a 5-fold cross-validation for 5 α values evenly
spaced from 0.20 to 0.01). The same conclusions for the α = 0.2 analysis apply:
CQR & SCP, and independently of α, are the best when it comes to attaining global
coverage.
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(A) Intervals’ width histograms
(B) Coverage in function of inter-

vals’ width (C) Coverage in function of α

FIGURE 4.1: Visualizations related to width & coverage distributions
for the test data and 4 different strategies, from top to bottom: SCP,
CV+, J+aB & CQR. The first 2 plots just display the last 3 strategies,
since SCP displays no adaptability at all (whereas J+aB slight to none

adaptability).

4.4 Time series data

For the non-exchangeable data use-case, the same dataset as the mapie’s time se-
ries tutorial was chosen. This is the Victoria electricity demand dataset, used in the
book “Forecasting: Principles and Practice” (Hyndman and Athanasopoulos, 2014),
and contains a total of 1340 hourly samples. It deals with an electricity demand fore-
casting problem, which not only features daily and weekly seasonality, but it is also
impacted by temperature. Thus, apart from the demand lagged up to 7 days (and
other time features), temperature will be used as exogenous variable.

The dataset can be visualized in Figure B.1 at Appendix B, where the complete
set of visualizations and plots for the results’ analysis can also be found.

In this case, a different ensemble model than gradient boosting (section 4.3) is
chosen as base estimator; in particular, a random forest regressor is implemented

https://mapie.readthedocs.io/en/stable/examples_regression/4-tutorials/plot_ts-tutorial.html
https://mapie.readthedocs.io/en/stable/examples_regression/4-tutorials/plot_ts-tutorial.html
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through sklearn library’s sklearn.ensemble.RandomForestRegressor Python class.
Similarly to section 4.3, a randomized grid-search is implemented using a 5-fold

cross-validation to automate the hyper-parameters fine-tuning task. For this partic-
ular problem, the found best settings are:

• max_depth: 23

• n_estimators: 99

Then, 2 strategies based in mapie’s EnbPI implementation (see the configuration
at section 4.1) are implemented, these are: EnbPI without partial fit (EnbPI_nP), i.e.
the test residuals are not used to further adjust the model (steps 15-19 of Algorithm
4); and EnbPI with partial fit (EnbPI).

In both cases, the prediction batches were implemented using the mapie’s class
for bootstrapping blocks of data, mapie.subsample.BlockBootstrap, with:

• n_resamplings= 100

• length= 48 (i.e. batch size of s = 48 h samples).

All the code used to generate these results and visualizations can be found at the
author’s timeseries.ipynb notebook.

4.4.1 Original dataset

For the original Victoria electricity demand dataset, both EnbPI_nP and EnbPI are
able to provide informative prediction intervals, presenting some minor differences
in their attributes as shown in Table 4.2.

Strategy Coverage RMSE Total time (train + infer)
EnbPI_nP 0.780 ± 0.069 0.165 ± 0.067 6.157 ± 0.334

EnbPI 0.789 ± 0.058 0.165 ± 0.067 528.343 ± 0.359

(A) Coverage, RMSE, total time (training & infer-
ence with residuals adjustment if applies).

Strategy Coverage Width CWC SSC
EnbPI_nP 0.780 ± 0.069 0.293 ± 0.013 0.935 ± 0.018 —

EnbPI 0.789 ± 0.058 0.300 ± 0.007 0.934 ± 0.016 0.518 ± 0.209

(B) Coverage, width, coverage width-based crite-
rion (CWC) score & size-stratified coverage (SSC)

score

TABLE 4.2: Different strategies’ metrics after the Figure 4.2’s 5-fold
cross-validation for the time series problem with α = 0.2.

Note these results stem from a 5-fold cross-validation, with the batches (not shuf-
fled samples, to break temporal auto-correlation) shown in Figure 4.2.

In particular, it is easy to conclude the benefits of adjusting the intervals with
the test residuals (steps 15-19 of Algorithm 4) since EnbPI is better than EnbPI_nP.
Despite a slight 0.001 loss width-coverage ratio score, the global coverage improved.
Not only global coverage was improved, but also adaptive intervals were enabled
achieving a 0.518 ± 0.209 SSC score (with respect to the non-adaptive intervals of
EnbPI_nP).

The latter can be easily checked in sub-figures 4.3a & 4.3b, where not only EnbPI
features several sized intervals, but it also attains uniform coverage in every of them

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://mapie.readthedocs.io/en/latest/generated/mapie.subsample.BlockBootstrap.html
https://github.com/gcastro-98/conformal-prediction/blob/main/timeseries.ipynb
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FIGURE 4.2: 5-fold splits from the original dataset.

(A) Intervals’ width histograms
(B) Coverage in function of inter-

vals’ width (C) Coverage in function of α

FIGURE 4.3: Intervals width & coverage distributions for the test data
and the EnbPI strategy (without partial fit, top; and with it, bottom).

(and almost the expected one). Also, the ability to attain global coverage for different
α values is shown in sub-figure 4.3c.

Of course, despite its complexity and multiple seasonality, this dataset is very
consistent presenting almost neither trend nor strong distribution shifts as shown in
Figure 4.2. Due to this reason, EnbPI_nP & EnbPI performances are really similar.

To avoid outshining EnbPI adaptive ability, a special strong-shift case is pre-
sented in subsection 4.4.2.

4.4.2 Change point in the test data

Henceforth in this subsection, a special case of the time series problem is considered.
In particular, a change point will be added in the test split (by artificially subtracting
2 GW) to mock off the situation in which there is a sudden strong distribution shift
in the middle of the test data. Also, in this case and unless otherwise is specified,
α = 0.05 is chosen as miscoverage level.
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The dataset with this change point can be visualized in Figure C.1 at Appendix
C (where the rest of visualizations can also be found).

For this particular scenario, EnbPI_nP and EnbPI do present significance differ-
ences in their performance, as shown in Table 4.3.

Strategy Coverage RMSE Total time (train + infer)
EnbPI_nP 0.439 ± 0.075 1.431 ± 0.024 6.047 ± 0.307

EnbPI 0.696 ± 0.042 1.431 ± 0.024 529.902 ± 1.319

(A) Coverage, RMSE, total time (training & infer-
ence with residuals adjustment if applies).

Strategy Coverage Width SSC
EnbPI_nP 0.439 ± 0.075 0.569 ± 0.043 —

EnbPI 0.696 ± 0.042 1.300 ± 0.034 0.069 ± 0.120

(B) Coverage, width & size-stratified coverage
(SSC) score.

TABLE 4.3: Different strategies’ metrics after the Figure 4.4’s 5-fold
cross-validation for the time series problem (with a change point in

test) and α = 0.05.

Note these metrics are obtained from the batched 5-fold cross-validation splits
shown in Figure 4.4 (just the test splits are shown, the train split is the rest of the
dataset for each case).

FIGURE 4.4: 5-fold splits from the dataset with change point in the
test split(s).

These results clearly justify the need of adjusting the intervals with the test resid-
uals (EnbPI) despite of significantly increasing the computational times.

Specifically, EnbPI’s ability of increasing the intervals width after the strong-shift
in the middle of the test split, allows the methodology to recover and yields a 58.54%
coverage increase. This justified need of suddenly increasing intervals width (mak-
ing them less informative) is the reason why the CWC score is not shown in Table
4.3, since it could lead to wrong interpretations (the metric would penalize this be-
havior).
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This behavior by which EnbPI, and after the change point, tries to compensate
the lack of coverage in their future predictions (by increasing intervals width) is eas-
ily observed at Figure 4.5.

FIGURE 4.5: EnbPI increasing interval width through its partial fit
feature, for a particular experiment with α = 0.05.

However, note that this recover speed is directly related to the tolerated miscov-
erage level. Namely, the lower the miscoverage α level, the quicker this change will
be featured. In particular, in Figure 4.6, it can be seen how EnbPI has no time to
recover for α = 0.20, 0.15 (80%, 85% confidence levels; top & middle sub-figures),
while it effectively does for α = 0.10 (but, of course, later than Figure 4.5’s α = 0.05).

These different speeds can also be noted at sub-figure 4.7c, in which the attained
global coverage for the EnbPI strategy varies non-linearly with α.

Finally, while in sub-figures 4.7a & 4.7b the adaptive feature of EnbPI intervals1

is shown; in Figure 4.8 the EnbPI’s progressive coverage recovery is featured in func-
tion of time with a rolling window (while indeed EnbPI_nP does not recover at all).

1Note the change point is also perceived with these 2 visualizations: the widest intervals correspond
to those with less conditional coverage, since those were issued after the change point’s recovery.
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FIGURE 4.6: EnbPI with partial fit recovering intervals’ width at
different pace, for different α values (from top to bottom: α =

0.20, 0.15, 0.10).
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(A) Intervals’ width histograms
(B) Coverage in function of inter-

vals’ width (C) Coverage in function of α

FIGURE 4.7: Width & coverage distributions for the change point’s
(test) data (α = 0.05) for EnbPI. At subfigure 4.7c, EnbPI_nP & EnbPI

are displayed (top & bottom, respectively).

FIGURE 4.8: Coverage in function of time (grouped within 24h rolling
windows) for the EnbPI strategies (and change point’s data).
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Chapter 5

Conclusions

Throughout this work, several methods have been theoretically justified and suc-
cessfully applied to quantify the prediction uncertainty both for regression and time
series problem. These strategies are distribution-free & model-agnostic and stem
from the notion of "conformalizing" predictions to data and using the residuals to un-
derstand the errors distribution. That is why they are grouped within the so-called
"conformal prediction" (CP) methodologies.

Even though CP paradigm was classically applied only under "data exchangeabil-
ity" conditions, this work has reviewed some of the most recent & non-trivial efforts
to enable CP when this hypothesis is not fulfilled.

In particular, while SCP, CV+, J+aB & CQR were studied for the exchangeable
case; regarding the time series case, "EnbPI" (Xu and Xie, 2021) was presented as the
strategy to effectively obtain prediction intervals with statistically valid coverage.

While all the former strategies were successfully applied to practical case, gener-
ally providing valid intervals, below the more fine-grained conclusions are listed:

• Exchangeable case (regression problem):

– The best strategies, decreasingly ordered by:

* Statistical efficiency are: CQR, SCP, CV+, J+aB. This is fulfilled inde-
pendently of α.

* Computational efficiency are: SCP, CQR, CV+, J+aB.

* Predictive power are: CV+ & J+aB, SCP, CQR.

* "Informativeness" (coverage-width ratio) are: J+aB, SCP, CQR, CV+.

* Adaptability are: CQR, CV+, J+aB (slight to none). Contrarily, SCP
intervals are not adaptive at all.

– CQR seems the best strategy to achieve the best marginal & conditional
coverage, when dataset is large enough.
Thus, it may result suitable when a conservative and statistical efficient
tool is needed.

– J+aB seems the best strategy to achieve the best informative intervals
(maximizing predictive power, while minimizing intervals width), at ex-
penses of no-adaptability & losing some coverage.
Thus, it may result suitable when more reckless guesses can be afforded
and low training & inference times are not a requirement.

• Non-exchangeable case (time series problem):

– EnbPI is a suitable option to provide valid intervals for time series prob-
lems.
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– In general, and particularly when there might be strong shifts in data,
EnbPI’s intervals adjustment using test residuals (its "partial fit" feature)
is of crucial importance.

– This "partial fit" option will not only allow the intervals’ coverage re-
cover from change points, but also will allow all the issued intervals to
be adaptive.

5.1 Further research

There a huge number of relevant other inquiries and research lines which could
extend this work, but were out of the scope of this thesis. Below, some of them are
reviewed:

• Leverage cross-validation folds in the CQR strategy, instead of a simple train-
test split of the dataset, to improve the predictive power and reduce the need
of a large dataset.

• Implement other contemporary CP methodologies for time series problems,
such as Adaptive Conformal Inference, ACI (Gibbs and Candes, 2021) and the
more recent Hopfield Conformal Prediction Trees, HopCPT (Auer et al., 2023); in
order to compare performance differences and their suitability.

• Extend all these methods to the multi-dimensional output variables’ case, to
broaden their applicability to multi-output regression & time series problems.

• Apply the former methodologies to classification problems (discrete target vari-
ables) and discuss whether similar conclusions to their continuous counter-
part can be drawn.
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Appendix A

Regression problem

Unless it is specified otherwise, the miscoverage level was set to α = 0.2 (i.e. 80% of
expected coverage) for the visualizations.

FIGURE A.1: Marginal distributions for each of the possible combina-
tions of the regression problem’s features.
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(A) Prediction intervals

(B) Goodness of the prediction intervals (predic-
tion vs. ground truth). Just 7.5% was used for

visualization purposes.

FIGURE A.2: Visualizations related to the prediction intervals for the
test data and 4 different strategies, from top to bottom: SCP, CV+,

J+aB and CQR.
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(A) Intervals’ width histograms
(B) Coverage in function of inter-

vals’ width (C) Coverage in function of α

FIGURE A.3: Visualizations related to width & coverage distributions
for the test data and 4 different strategies; from top to bottom: SCP,
CV+, J+aB & CQR. The first 2 plots just display the last 3 strategies,
since SCP displays no adaptability at all (whereas J+aB slight to none

adaptability).
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FIGURE A.4: Test data metrics for the 4 different strategies and 1 par-
ticular experiment (no 5-folds CV) for α = 0.20. From top to bottom:

SCP, CV+, J+aB and CQR.
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Appendix B

Time series original problem

Unless it is specified otherwise, the miscoverage level was set to α = 0.2 (i.e. 80% of
expected coverage) for the visualizations.

FIGURE B.1: Time series problem’s dataset.

FIGURE B.2: 5-fold splits from the original dataset and for the assess-
ments based on cross-validations.
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(A) Prediction intervals

(B) Goodness of the prediction intervals (prediction vs. ground truth). Just a 50% of the data is shown
due to visualization reasons.

FIGURE B.3: Visualizations related to the prediction intervals for the
test data and the EnbPI strategy (without partial fit, top; and with it,

bottom).
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(A) Intervals’ width histograms
(B) Coverage in function of inter-

vals’ width (C) Coverage in function of α

FIGURE B.4: Visualizations related to width & coverage distributions
for the test data and the EnbPI strategy (without partial fit, top; and

with it, bottom).

FIGURE B.5: Test data coverage, for the EnbPI strategies, in function
of time (grouped within 24h rolling windows).

FIGURE B.6: Test data metrics for the EnbPI strategy and 1 particular
experiment (no 5-folds CV) for α = 0.20. From top to bottom: EnbPI

without partial fit (EnbPI_nP), EnbPI with it (EnbPI).
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Appendix C

Time series problem with change
point in test

Unless it is specified otherwise, the miscoverage level was set to α = 0.05 (i.e. 95%
of expected coverage) for the visualizations.

FIGURE C.1: Time series problem’s dataset when a change point is
added to the test split.

FIGURE C.2: 5-fold splits from the original dataset and with a change
point in the test split.
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(A) Prediction intervals

(B) Goodness of the prediction intervals (prediction vs. ground truth). Just a 50% of the data is shown
due to visualization reasons.

FIGURE C.3: Visualizations related to the prediction intervals for the
test data (with a change point) & the EnbPI strategy (without partial

fit, top; and with it, bottom).
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(A) Intervals’ width histograms
(B) Coverage in function of inter-

vals’ width (C) Coverage in function of α

FIGURE C.4: Visualizations related to width & coverage distributions
for the test data (with a change point) & the EnbPI strategy (without

partial fit, top; and with it, bottom).

FIGURE C.5: Test data coverage (change point’s dataset), for the
EnbPI strategies, in function of time (grouped within 24h rolling win-

dows).

FIGURE C.6: Test data metrics for the EnbPI strategy and 1 particular
experiment (no 5-folds CV) for α = 0.05 and the chage point dataset.
From top to bottom: EnbPI without partial fit (EnbPI_nP), EnbPI with

it (EnbPI).
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FIGURE C.7: Prediction intervals (change point’s dataset) in function
of time and for different values of α.
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