Conformal prediction

Beyond exchangeability

Results

Conclusions

Conformal prediction and beyond

Uncertainty quantification for regression & time-series problems

Gerard Castro

Universitat de Barcelona

July 11, 2024

Facultat de Matemàtiques i Informàtica

Gerard Castro Conformal prediction and beyond

- 2 Conformal prediction
- **3** Beyond exchangeability
- 4 Results
- **5** Conclusions

- * ロ * * 個 * * 注 * * 注 * ・ 注 ・ の < @

Universitat de Barcelona

Gerard Castro

Conformal prediction and beyond

Introduction ○●	Conformal prediction	Beyond exchangeability 00000	Results 0000000000000	Conclusions
Motivation				

- We extract *n* samples from $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables with unknown marginal & joint distributions.
- Given a new sample X_{n+1} & miscoverage level $\alpha \in [0, 1]$:
 - We want to estimate a predictive interval C_α such that the probability of Y_{n+1} falling into C_α is at least 1 α, *i.e.*

$$\mathbb{P}\{Y_{n+1} \in \mathcal{C}_{\alpha}(X_{n+1})\} \geq 1 - \alpha$$

• The interval should be the **smallest** possible while **keeping coverage**. **Conditional** coverage ideally sought.

Introduction ○●	Conformal prediction	Beyond exchangeability 00000	Results 0000000000000	Conclusions
Motivation				

- We extract *n* samples from $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables with unknown marginal & joint distributions.
- Given a new sample X_{n+1} & miscoverage level $\alpha \in [0, 1]$:
 - We want to estimate a predictive interval C_α such that the probability of Y_{n+1} falling into C_α is at least 1 α, *i.e.*

$$\mathbb{P}\{Y_{n+1} \in \mathcal{C}_{\alpha}(X_{n+1})\} \ge 1 - \alpha$$

• The interval should be the **smallest** possible while **keeping coverage**. **Conditional** coverage ideally sought.

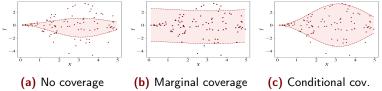


Figure 1: Different types of coverage.

Gerard Castro

2 Conformal prediction

- Beyond exchangeability
- 4 Results
- 6 Conclusions

Universitat de Barcelona

Gerard Castro

Conformal prediction and beyond

Split Conformal Prediction (SCP)

We need to use out-of-training data to understand how errors distribute: we need to "*conformalize*" the predictions to the data using a "*conformity score*". SCP proposes:

- **1** Split data into training Tr & calibration Cal.
- **2** Obtain $\hat{\mu}$ by training it in Tr.
- **3** Obtain a set S of conformity scores by using the Cal set: $S_{Cal} := \{ |Y_i - \hat{\mu}(X_i)|, i \in Cal \}.$
- **4** Compute the 1α "*empirical quantile*" of S_{Cal} : $q_{1-\alpha}(S_{Cal})$.

Split Conformal Prediction (SCP)

We need to use out-of-training data to understand how errors distribute: we need to "*conformalize*" the predictions to the data using a "*conformity score*". SCP proposes:

- **1** Split data into training Tr & calibration Cal.
- **2** Obtain $\hat{\mu}$ by training it in Tr.
- **3** Obtain a set S of conformity scores by using the Cal set: $S_{Cal} := \{ |Y_i - \hat{\mu}(X_i)|, i \in Cal \}.$
- **3** Compute $(1 \alpha) \left(\frac{1}{\#Cal} + 1\right)$ quantile of S_{Cal} : $q_{1-\alpha}(S_{Cal})$.

Split Conformal Prediction (SCP)

We need to use out-of-training data to understand how errors distribute: we need to "*conformalize*" the predictions to the data using a "*conformity score*". SCP proposes:

- **1** Split data into training Tr & calibration Cal.
- **2** Obtain $\hat{\mu}$ by training it in Tr.
- **3** Obtain a set S of conformity scores by using the Cal set: $S_{Cal} := \{ |Y_i - \hat{\mu}(X_i)|, i \in Cal \}.$
- **3** Compute $(1 \alpha) \left(\frac{1}{\#Cal} + 1\right)$ quantile of S_{Cal} : $q_{1-\alpha}(S_{Cal})$.
- **(5)** For a new sample X_{n+1} , return

$$\hat{\mathcal{C}}_{\alpha} = [\hat{\mu}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}_{\operatorname{Cal}}), \ \hat{\mu}(X_{n+1}) + q_{1-\alpha}(\mathcal{S}_{\operatorname{Cal}})]$$

Note

The only hypothesis required is data exchangeability.

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Gerard Castro

Conformalized Quantile Regression (CQR)

We need to use out-of-training data to understand how errors distribute: we need to "*conformalize*" the predictions to the data using a "*conformity score*". SEP CQR proposes:

- 1 Split data into training Tr & calibration Cal.
- **2** Obtain $\hat{\mu}_{down} \& \hat{\mu}_{up}$ trained in Tr.
- **3** Obtain a set S of conformity scores by using the Cal set: $S_{Cal} := \{ \max(\hat{\mu}_{down}(X_i) - Y_i, Y_i - \hat{\mu}_{up}(X_i)), i \in Cal \}.$
- **4** Compute $(1 \alpha) \left(\frac{1}{\#Cal} + 1\right)$ quantile of S_{Cal} : $q_{1-\alpha}(S_{Cal})$.
- **5** For a new sample X_{n+1} , return

 $\hat{\mathcal{C}}_{\alpha}(X_{n+1}) = \left[\hat{\mu}_{\text{down}}(X_{n+1}) - q_{1-\alpha}\left(\mathcal{S}_{\text{Cal}}\right), \ \hat{\mu}_{\text{up}}(X_{n+1}) + q_{1-\alpha}\left(\mathcal{S}_{\text{Cal}}\right)\right]$

Note

The only hypothesis required is data exchangeability.

Gerard Castro

Universitat de Barcelona

Conclusions

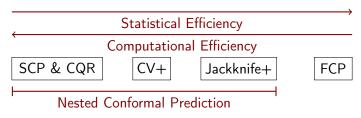


Figure 2: Trade-off between statistical & computational efficiency.

 Both CV+ & J+aB are based on defining multiple folds to apply a similar methodology as SCP: cross-validation & leave-one-out (LOO) folds, respectively.

< 口 > < 何

Introduction

2 Conformal prediction

3 Beyond exchangeability

4 Results

5 Conclusions

- ▲日を▲堕を▲回を▲回を▲日を

Universitat de Barcelona

Gerard Castro

Conformal prediction and beyond

Introduction	Conformal prediction	Beyond exchangeability 0●000	Results 0000000000000	Conclusions
<u> </u>		C		

Covariate shift: changes in features' distribution

•
$$\{(X_i, Y_i)\}_{i=1}^n \overset{\text{exch.}}{\sim} P_X \times P_{Y|X}$$

- $(X_{n+1}, Y_{n+1}) \sim \tilde{P}_X \times P_{Y|X}$
- Tibshirani et al. (2019) heuristic idea:
 - **1** Estimate how "close" a sample X_i ($\sim P_X$) is *w.r.t.* to the test point ($\sim \tilde{P}_X$) using the likelihood ratio: $w(X_i) := \frac{d\tilde{P}_X(X_i)}{dP_X(X_i)}$.
 - **2** Normalize the weights: $\omega_i := \frac{w(X_i)}{\sum_{i=1}^{n+1} w(X_i)}$.
 - **3** Build the predictive interval C_{α} using the weighted calibration samples:

$$\hat{\mathcal{C}}_{\alpha}(X_{n+1}) = \{Y: s_{\hat{\mu}}(X_{n+1}, Y) \leq q_{1-\alpha}(\{\omega_i S_i\}_{i \in \operatorname{Cal}})\}$$

Label shift: changes in target's distribution

•
$$\{(X_i, Y_i)\}_{i=1}^n \overset{\text{exch.}}{\sim} P_{X|Y} \times P_Y$$

•
$$(X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times \tilde{P}_Y$$

- A. Podkopaev & A. Ramdas (2021) adapts former idea letting weights as function of Y, ω^Y_i:
 - **1** Estimate how "close" a label $Y_i (\sim P_Y)$ is *w.r.t.* to the hypothetical point $(\sim \tilde{P}_Y)$ using the likelihood ratio: $w(Y_i) := \frac{d\tilde{P}_Y(Y_i)}{dP_Y(Y_i)}.$
 - **2** Normalize the weights: $\omega_i^Y := \frac{w(Y_i)}{\sum_{j=1}^n w(Y_j) + w(Y)}$.
 - Build the predictive interval C_α traversing all the variable output's space and using the weighted calibration samples:

$$\hat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right) = \left\{Y: \ s_{\hat{\mu}}\left(X_{n+1}, Y\right) \leq q_{1-\alpha}\left(\left\{\omega_{i}^{Y}S_{i}\right\}_{i \in \operatorname{Cal}}\right)\right\}$$

Image: A mathematical states and a mathem

Time series data: samples (temporal) auto-correlation

- Assume a setup like $Y_t = \mu(X_t) + \epsilon_t$, where ϵ_t are *i.i.d.* according to a cumulative distribution function *F*.
- Let the first T sample points $\mathcal{D} := \{(X_t, Y_t)_{t=1}^T\}$ be training data: we want a sequence of $s \ge 1$ intervals of α miscoverage level, $\{\mathcal{C}_{T,T+i}^{\alpha}\}_{i=1}^{s}$ (for the unknown labels $\{Y_{T+i}^{\alpha}\}_{i=1}^{s}$).
 - s is the batch size (n^o steps to look ahead)
- Also, once new samples {(X_{T+i}, Y_{T+i})}^s_{i=1} become available, we would like to also leverage them.
 - We want to use the most recent T + s points for the $\{C^{\alpha}_{T+s,j}\}_{j=T+s+1}^{=T+2s}$ intervals.

Image: A mathematical states and a mathem

Time series data: samples (temporal) auto-correlation

- Assume a setup like $Y_t = \mu(X_t) + \epsilon_t$, where ϵ_t are *i.i.d.* according to a cumulative distribution function *F*.
- Let the first T sample points $\mathcal{D} := \{(X_t, Y_t)_{t=1}^T\}$ be training data: we want a sequence of $s \ge 1$ intervals of α miscoverage level, $\{\mathcal{C}_{T,T+i}^{\alpha}\}_{i=1}^{s}$ (for the unknown labels $\{Y_{T+i}^{\alpha}\}_{i=1}^{s}$).
 - s is the batch size (n^o steps to look ahead)
- Also, once new samples {(X_{T+i}, Y_{T+i})}^s_{i=1} become available, we would like to also leverage them.
 - We want to use the most recent T + s points for the $\{C^{\alpha}_{T+s,j}\}_{j=T+s+1}^{=T+2s}$ intervals.

 \implies *C. Xu* & *Y. Xie* (2021) proposes the "EnbPI" methodology:

- It uses no data-splitting but LOO estimators (µ̂_{-i} model trained with D \ {(X_i, Y_i)}).
- Models not refitted during test time, but newest samples' residuals used to further *conformalize* predictions.

Gerard Castro

Introduction 00	Conformal prediction	Beyond exchangeability 0000●	Results 0000000000000	Conclusions
E. DI S.L.				

EnbPI idea

There are T training samples and we build T_1 intervals (indices $T + 1, ..., T + T_1$):

- Obtain *B* bootstrapped models μ^b by:
 - Sampling, with replacement, an index set $S_b := (i_1, \dots, i_T)$
 - Fitting the bootstrapped model with S_b
- For *i* = 1, ..., *T*:
 - Aggregate μ^{b} with any function ϕ : obtaining $\hat{\mu}^{\phi}_{-i}$.
 - Compute conformity scores: $\epsilon_i^{\phi} := |Y_i \hat{\mu}_{-i}^{\phi}(X_i)|.$
- For each $t = T + 1, ..., T + T_1$ timestamps, return in batches of *s* size:

$$\hat{\mathcal{C}}^{\alpha}_{T,t}(X_t) = \left[\hat{\mu}^{\phi}_{-t}(X_t) \pm w^{\phi}_t\right], \text{ where } \begin{cases} \hat{\mu}^{\phi}_{-t}(X_t) : 1 - \alpha \text{ quant. } \{\hat{\mu}^{\phi}_{-i}(X_t)\}_{i=1}^T \\ w^{\phi}_t : 1 - \alpha \text{ quantile of } \{\epsilon^{\phi}_i\}_{i=1}^T \end{cases}$$

• "Partial fit" step: for each s returned intervals, conformity score w_t^{ϕ} is re-computed with the most recent observations.

nan

- 2 Conformal prediction
- **3** Beyond exchangeability

4 Results

Assessment Regression problem Time series problem

5 Conclusions

Gerard Castro Conformal prediction and beyond

- 2 Conformal prediction
- **3** Beyond exchangeability

Assessment

Regression problem Time series problem

5 Conclusions

Gerard Castro Conformal prediction and beyond - <ロ> <個> <ヨ> <ヨ> 三 ろくぐ

Introduction	Conformal prediction	Beyond exchangeability 00000	Results ○0●○○○○○○○○○	Conclusions
Metrics de	finition			

The following metrics will be used:

- **Coverage level**: *i.e.* fraction of true labels lying within the prediction intervals (the closer to 1α , the better)
- Interval width: intervals' mean width (the smaller, the better)
- "*Informativeness*": best width-coverage ratio, assessed through CWC score (the higher, the better):

w mean width

 $CWC = (1 - w) * \exp(-\eta(c - (1 - \alpha))^2), \text{ with } \{c \text{ attained coverage } \eta \text{ balancing term } \}$

- Adaptability: ability of achieving conditional coverage, assessed through SSC score (the closer to 1α , the better).
 - Maximum coverage violation along all width groups.
 - Only usable for non-constant width intervals.
- Computational efficiency: measured by CPU time.

Gerard Castro

- 2 Conformal prediction
- **3** Beyond exchangeability

4 Results

Assessment

Regression problem

Time series problem

5 Conclusions

Gerard Castro Conformal prediction and beyond - ▲日 > ▲ 個 > ▲ 画 > ▲ 画 > ● ● ●

Conformal prediction

Beyond exchangeability

Results

Conclusions

Data & modeling

A tabular regression problem is considered with:

- The sklearn built-in California Housing dataset (20,640 samples, 8 features).
- A (light) gradient boosting regressor, LGBM, automatically fine-tuned through grid-search.
- A 5-fold cross-validation assessment for $\alpha = 0.20$ miscoverage level.

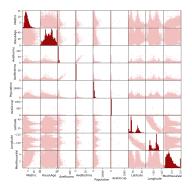


Figure 3: Marginal distributions.

< 17 ▶

Gerard Castro

Introduction 00	Conformal prediction	Beyond exchangeability	Results ०००००●0००००००	Conclusions
Metrics tab	le			

	Strategy	/	Coverage		RMSE		Train. time	Inf. time
	SCP		0.806 ± 0.008	3	0.472 ± 0.007	7	1.6 ± 0.2	0.07 ± 0.05
	CV+		0.853 ± 0.004		0.467 ± 0.009		9 ± 3	8.0 ± 0.3
	J+aB		0.734 ± 0.007		0.467 ± 0.009)	51 ± 5	9.7 ± 0.4
	CQR		0.805 ± 0.010		0.494 ± 0.013		2.6 ± 0.1	0.10 ± 0.04
5	Strategy		Coverage		Width		CWC	SSC
	SCP	(0.806 ± 0.008	(0.971 ± 0.015	(0.798 ± 0.004	—
	CV+	(0.853 ± 0.004	-	1.042 ± 0.005	(0.784 ± 0.002	0.65 ± 0.01
	J+aB	(0.734 ± 0.007	(0.710 ± 0.003	(0.853 ± 0.001	_
	CQR	(0.805 ± 0.010	-	1.013 ± 0.013	0	0.790 ± 0.004	0.75 ± 0.04

3

(日) (四) (注) (注)

Gerard Castro

Conformal prediction and beyond

999

ntroduction	0

Conformal prediction

Beyond exchangeability

Results

Conclusions

Other visualizations

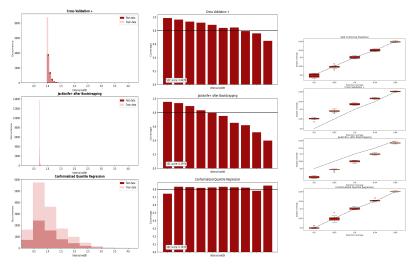


Figure 4: Width histograms & coverage vs. width & α .

Gerard Castro

Conformal prediction and beyond

Universitat de Bar<u>celona</u>

- 2 Conformal prediction
- Beyond exchangeability

Accorr

Regression problem

Time series problem

Original dataset Change point in test

5 Conclusions

Gerard Castro Conformal prediction and beyond - ▲日 > ▲ 雪 > ▲ 雪 > ▲ 雪 > ▲ 句 > ④

Introduction 00	Conformal prediction	Beyond exchangeability 00000	Results ○○○○○○○●○○○○	Conclusions
_				

Dataset

A time series forecasting problem is considered with:

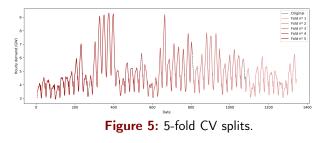
- Victoria electricity demand dataset (1340 samples, features: time, demand lagged up to 7 days & temperature).
- A sklearn random forest regressor automatically fine-tuned through grid-search.
- A 5-fold cross-validation for $\alpha = 0.20$:

Introduction	Conformal prediction	Beyond exchangeability 00000	Results ○○○○○○○●○○○○	Conclusions
D				

Dataset

A time series forecasting problem is considered with:

- Victoria electricity demand dataset (1340 samples, features: time, demand lagged up to 7 days & temperature).
- A sklearn random forest regressor automatically fine-tuned through grid-search.
- A 5-fold cross-validation for $\alpha = 0.20$:



Introduction	
00	

Conformal predictior

Beyond exchangeability

Results

Conclusions

Metrics table

	EnbPI_nP 0.78		trategy Coverage RMSE		ЛSE	Total	time		
			0.780	± 0.069 0.165 ± 0.067		6.2 ± 0.3			
			0.789	\pm 0.058	0.165 ± 0.067		528.3	± 0.4	
Strateg	у	Coverage		Wid	th	CW	'C	SSC	5
nbPI_n	ıΡ	0.780 \pm	0.069	0.293 \pm	0.013	0.935 \pm	0.018	—	
EnbPI		0.789 \pm	0.058	0.300 \pm	0.007	0.93 \pm	0.02	0.5 \pm	0.2

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○</p>

Gerard Castro

S E

Conformal prediction and beyond

ntroduction	Conformal prediction	Beyond exchangeability 00000	Results ○○○○○○○○○●○○	Conclusion
Other visua	lizations			

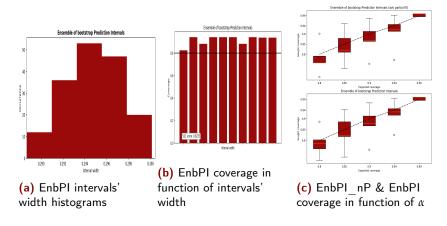


Figure 6: Width histograms & coverage vs. width & α .

Gerard Castro

Conformal prediction and beyond

troduction 0	Conformal prediction	Beyond exchangeability 00000	Results ○○○○○○○○○○○	Conclusions

Idea

The consistency of former time series may outshine the benefits of the "*partial fit*" EnbPI feature. Thus:

- A change point is added in test to mock off a distribution shift.
- The same random forest regressor will be applied to a 5-fold cross-validation, now for $\alpha = 0.05$:

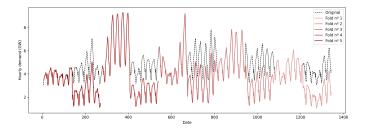
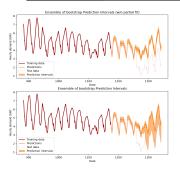


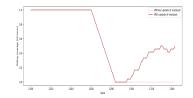
Figure 7: 5-fold CV splits with change points in each test's.

Gerard Castro

Conformal prediction and beyond

Introduction	Conformal pre	diction Beyond exc	hangeability Result	:s Co 00000000● 00	nclusion 0					
Metrics & plot										
	Strategy	Coverage	RMSE	Total time						
	EnbPI_nP	0.439 ± 0.075	1.431 ± 0.024	6.0 ± 0.3						
	EnbPI	0.696 ± 0.042	1.431 ± 0.024	530 ± 1						
	Strategy	Coverage	Width	SSC						
	EnbPI_nP	0.439 ± 0.075	0.569 ± 0.043	_	1					
	EnbPI	0.696 ± 0.042	1.300 ± 0.034	0.07 ± 0.12						





< 口 > < 向

Gerard Castro

Conformal prediction and beyond

- 2 Conformal prediction
- Beyond exchangeability
- 4 Results

- * ロ > * 母 > * 山 > * 山 > * 山 > * 日 = * 1

Universitat de Barcelona

Gerard Castro

Conformal prediction and beyond

Regression & time series

The best strategies for exchangeable data are, **decreasingly** ordered by:

- *Statistical efficiency*: CQR, SCP, CV+, J+aB.
 - This is fulfilled independently of α .
- *Computational efficiency*: SCP, CQR, CV+, J+aB.
- Predictive power are: CV+ & J+aB, SCP, CQR.
- "Informativeness": J+aB, SCP, CQR, CV+.
- *Adaptability*: CQR, CV+, J+aB (slight to none). Contrarily, SCP intervals are not adaptive at all.

Regarding the time series case, **EnbPI** is a **suitable option** to provide valid intervals.

- EnbPI's adjustment using test residuals is necessary.
- This option also allows all the issued **intervals** to be **adaptive**.

Image: A math a math

Thank you for your attention!

Questions?

Gerard Castro Conformal prediction and beyond Universitat de Barcelona

27 / 27